Year 8 Volume Progress Test

Question 1

What is the volume of this prism?

1m

a. $3^{2} \mathrm{~cm}$
b. $3 \mathrm{~m}^{3}$
c. $3^{3} \mathrm{~m}$
d. $4 \mathrm{~m}^{3}$

Question 3

This 3D object is made from millimetre cubes.
What is its volume?
\square mm^{3}

Question 2

How many centimetre cubes make a rectangular prism that is 3 cm long, 2 cm wide and 1 cm high?

Question 4

How many cubic centimetres are in a cube with side lengths 2 cm ?

\square

Question 5

Question 6

These blocks of cheese are square prisms, each 6 cm by 6 cm by 3 cm .

Which of the following statements is true about these two cubes?

Each block is cut into two equal pieces as shown.

0.5 m

1 m

Zach ate one of each of the three different shaped pieces.

What volume of cheese did Zach eat?
\square

Question 7

A cube has a volume of $64 \mathrm{~mm}^{3}$.
How long is each side?
\square
mm

Question 8

48 centimetre cubes fit exactly into a rectangular prism of length 6 cm and breadth 2 cm .

What is the height of the box?
\square

Question 9

Question 10

This cylinder has a cross-sectional area of $60 \mathrm{~cm}^{2}$ and a height of 10 cm .

\square

What is the volume?

$$
\text { Volume }=\square \mathrm{cm}^{3}
$$

A prism has a parallelogram with area $28 \mathrm{~cm}^{2}$ on each end and height 12 cm .

Question 11

Question 12

Find the volume of this rectangular prism with crosssectional area of $13.5 \mathrm{~m}^{2}$ and length 2 m .

Volume $=\square \mathrm{m}^{3}$

$$
\begin{aligned}
V & =A \times h \\
& =\square \mathrm{m}^{3}
\end{aligned}
$$

Question 13

Cylinder A has diameter 10 m and cylinder B's diameter is 5 m . Which cylinder has the greater volume?

Question 14

Volume $=70 \mathrm{~cm}^{3}$
Area of base, $A=\square \mathrm{cm}^{2}$
a) Cylinder A
b) Cylinder B
c) Neither, both cylinders have the same volume.

Question 15

Question 16
Calculate the volume of this pipe in terms of π.

Volume $=\square \pi \mathrm{cm}^{3}$

What volume of concrete is needed to make this pipe?
Gove your answer correct to two deicmal places.

Volume $=\square \mathrm{m}^{3}$ (to 2 decimal places)

